Altex Epoxy High Build Surfacer Part A

RESENE PAINTS AUSTRALIA

Version No: **2.3**Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **25/10/2017** Print Date: **24/02/2019** S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Altex Epoxy High Build Surfacer Part A	
Synonyms	Not Available	
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Part A of a two pack epoxy surfacer
--------------------------	-------------------------------------

Details of the supplier of the safety data sheet

Registered company name	RESENE PAINTS AUSTRALIA	
Address	7 Production Ave, Molendinar QLD 4214 Australia	
Telephone	+61 7 55126600	
Fax	+61 7 55126697	
Website	Not Available	
Email	Not Available	

Emergency telephone number

Association / Organisation	Not Available	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	131126	+61 1800 951 288
Other emergency telephone numbers	Not Available	+61 2 9186 1132

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable	
Classification ^[1]	Flammable Liquid Category 2, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Reproductive Toxicity Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - repeated exposure Category 2, Chronic Aquatic Hazard Category 3	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

SIGNAL WORD DANGER

Hazard statement(s)

mazaru statement(s)	
H225	Highly flammable liquid and vapour.
H302	Harmful if swallowed.
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H317	May cause an allergic skin reaction.
H361	Suspected of damaging fertility or the unborn child.
H335	May cause respiratory irritation.
H373	May cause damage to organs through prolonged or repeated exposure.
H412	Harmful to aquatic life with long lasting effects.

 Chemwatch: 9-90528
 Page 2 of 19
 Issue Date: 25/10/2017

Version No: 2.3 Altex Epoxy High Build Surfacer Part A

Print Date: 24/02/2019

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P260	Do not breathe dust/fume/gas/mist/vapours/spray.
P271	Use in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P281	Use personal protective equipment as required.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/attention.
P362	Take off contaminated clothing and wash before reuse.
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.
P302+P352	IF ON SKIN: Wash with plenty of soap and water.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.
P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P330	Rinse mouth.

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
25068-38-6	10-20	bisphenol A/ diglycidyl ether resin, liquid
108-88-3	10-20	toluene
78-83-1	1-10	<u>isobutanol</u>
68609-97-2	1-10	(C12-14)alkylglycidyl ether
1330-20-7	1-10	xvlene
100-41-4	<=1	ethylbenzene
108-10-1	1-10	methyl isobutyl ketone

SECTION 4 FIRST AID MEASURES

Description of first aid measures

If this product comes in contact with the eyes:

Eye Contact

- Wash out immediately with fresh running water.
- Finsure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- ► Seek medical attention without delay; if pain persists or recurs seek medical attention.
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Chemwatch: 9-90528 Page 3 of 19 Issue Date: 25/10/2017 Version No: 2.3 Print Date: 24/02/2019

Altex Epoxy High Build Surfacer Part A

Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Chemwatch: 9-90528 Page 4 of 19 Issue Date: 25/10/2017
Version No: 2.3 Print Date: 24/02/2019

Altex Epoxy High Build Surfacer Part A

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

To treat poisoning by the higher aliphatic alcohols (up to C7):

- Gastric lavage with copious amounts of water.
- It may be beneficial to instill 60 ml of mineral oil into the stomach.
- Oxygen and artificial respiration as needed.
- Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens
- ▶ To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose.
- ► Haemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5)

BASIC TREATMENT

.....

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary for shock.
- Monitor and treat, where necessary, for pulmonary oedema.
- Anticipate and treat, where necessary, for seizures.
- ▶ DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- ▶ Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or pasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- ▶ Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- ► Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- ▶ If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- ▶ Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

EMERGENOT BEFARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Acidosis may respond to hyperventilation and bicarbonate therapy.
- Haemodialysis might be considered in patients with severe intoxication.
- Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For C8 alcohols and above.

 $\label{thm:continuous} \mbox{Symptomatic and supportive the rapy is advised in managing patients}.$

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Index Sampling Time Comments

Methyllicipus de ceide in urine

1.5 cm/cm creaticipe

Find of chiff

Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ▶ Alcohol stable foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Fighting

Fire Incompatibility

Avoid contamin

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- ► Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water course.

Chemwatch: 9-90528 Page 5 of 19 Issue Date: 25/10/2017 Version No: 2.3 Print Date: 24/02/2019

Altex Epoxy High Build Surfacer Part A

	 Consider evacuation (or protect in place). Fight fire from a safe distance, with adequate cover. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control the fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat, flame and/or oxidisers. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material.
HAZCHEM	•3YE

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ▶ Electrostatic discharge may be generated during pumping this may result in fire. ▶ Ensure electrical continuity by bonding and grounding (earthing) all equipment. Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then \leq 7 m/sec). ▶ Avoid splash filling. ▶ Do NOT use compressed air for filling discharging or handling operations. ▶ Avoid all personal contact, including inhalation. ▶ Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Safe handling Prevent concentration in hollows and sumps.
 - ▶ DO NOT enter confined spaces until atmosphere has been checked.

▶ Containers, even those that have been emptied, may contain explosive vapours. ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

- Avoid smoking, naked lights, heat or ignition sources.
- When handling, **DO NOT** eat, drink or smoke
- Vapour may ignite on pumping or pouring due to static electricity.
- ► DO NOT use plastic buckets
- ▶ Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials. Keep containers securely sealed.
- ▶ Avoid physical damage to containers.

Chemwatch: 9-90528 Page 6 of 19 Issue Date: 25/10/2017

Version No. 2.3 Print Date: 24/02/2019 Altex Epoxy High Build Surfacer Part A

- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- ▶ Store in original containers in approved flame-proof area.
- ▶ No smoking, naked lights, heat or ignition sources.
- **DO NOT** store in pits, depressions, basements or areas where vapours may be trapped.
- Other information Keep containers securely sealed.
 - Store away from incompatible materials in a cool, dry well ventilated area.
 - Protect containers against physical damage and check regularly for leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- Packing as supplied by manufacturer.
- ▶ Plastic containers may only be used if approved for flammable liquid.
- ► Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- ► For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- ▶ Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

- reacts violently with strong oxidisers, bromine, bromine trifluoride, chlorine, hydrochloric acid/ sulfuric acid mixture, 1,3-dichloro-5,5-dimethyl-2,4-imidazolidindione, dinitrogen tetraoxide, fluorine, concentrated nitric acid, nitrogen dioxide, silver chloride, sulfur dichloride, uranium fluoride, vinyl acetate
- ▶ forms explosive mixtures with strong acids, strong oxidisers, silver perchlorate, tetranitromethane
- ▶ is incompatible with bis-toluenediazo oxide
- attacks some plastics, rubber and coatings
- may generate electrostatic charges, due to low conductivity, on flow or agitation.

Xylenes:

- ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- ▶ attack some plastics, rubber and coatings
- may generate electrostatic charges on flow or agitation due to low conductivity.
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- ▶ Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides
- ▶ Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- ► Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs.

Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 Alcohols

Storage incompatibility

- ▶ are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen
- react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium
- ▶ should not be heated above 49 deg. C. when in contact with aluminium equipment
- ▶ Avoid reaction with amines, mercaptans, strong acids and oxidising agents

Formaldehyde:

- ▶ is a strong reducing agent
- rmay polymerise in air unless properly inhibited (usually with methanol up to 15%) and stored at controlled temperatures
- ▶ will polymerize with active organic material such as phenol
- reacts violently with strong oxidisers, hydrogen peroxide, potassium permanganate, acrylonitrile, caustics (sodium hydroxide, vielding formic acid and flammable hydrogen), magnesium carbonate, nitromethane, nitrogen oxides (especially a elevated temperatures), peroxyformic acid
- is incompatible with strong acids (hydrochloric acid forms carcinogenic bis(chloromethyl)ether*), amines, ammonia, aniline, bisulfides, gelatin, iodine, magnesite, phenol, some monomers, tannins, salts of copper, iron, silver.
- ▶ acid catalysis can produce impurities: methylal, methyl formate

Aqueous solutions of formaldehyde:

- ► slowly oxidise in air to produce formic acid
- attack carbon steel

Concentrated solutions containing formaldehyde are:

- unstable, both oxidising slowly to form formic acid and polymerising; in dilute aqueous solutions formaldehyde appears as monomeric hydrate (methylene glycol) - the more concentrated the solution the more polyoxymethylene glycol occurs as oligomers and polymers (methanol and amine-containing compounds inhibit polymer formation)
- readily subject to polymerisation, at room temperature, in the presence of air and moisture, to form paraformaldehyde (8-100 units of formaldehyde), a solid mixture of linear polyoxymethylene glycols containing 90-99% formaldehyde; a cyclic trimer, trioxane (CH2O3), may also form

Flammable and/or toxic gases are generated by the combination of aldehydes with azo, diazo compounds, dithiocarbamates, nitrides, and strong reducing agents

*The empirical equation may be used to determine the concentration of bis(chloromethyl)ether (BCME) formed by reaction with HCI:

Altex Epoxy High Build Surfacer Part A

Print Date: 24/02/2019

 $log(BCME)ppb = -2.25 + 0.67 \cdot log(HCHO) ppm + 0.77 \cdot log(HCI)ppm$

Assume values for formaldehyde, in air, of 1 ppm and for HCl of 5 ppm, resulting BCME concentration, in air, would be 0.02 ppb. Glycidyl ethers:

- real may form unstable peroxides on storage in air ,light, sunlight, UV light or other ionising radiation, trace metals inhibitor should be maintained at adequate levels
- may polymerise in contact with heat, organic and inorganic free radical producing initiators
- ► may polymerise with evolution of heat in contact with oxidisers, strong acids, bases and amines
- react violently with strong oxidisers, permanganates, peroxides, acyl halides, alkalis, ammonium persulfate, bromine dioxide
- attack some forms of plastics, coatings, and rubber

- X Must not be stored together
- May be stored together with specific preventions 0
- May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	toluene	Toluene	50 ppm / 191 mg/m3	574 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	isobutanol	Isobutyl alcohol	50 ppm / 152 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	80 ppm / 350 mg/m3	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	ethylbenzene	Ethyl benzene	100 ppm / 434 mg/m3	543 mg/m3 / 125 ppm	Not Available	Not Available
Australia Exposure Standards	methyl isobutyl ketone	Methyl isobutyl ketone	50 ppm / 205 mg/m3	307 mg/m3 / 75 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
bisphenol A/ diglycidyl ether resin, liquid	Epoxy resin includes EPON 1001, 1007, 820, ERL-2795	90 mg/m3	990 mg/m3	5,900 mg/m3
toluene	Toluene	Not Available	Not Available	Not Available
isobutanol	Isobutyl alcohol	150 ppm	1,300 ppm	8000 ppm
xylene	Xylenes	Not Available	Not Available	Not Available
ethylbenzene	Ethyl benzene	Not Available	Not Available	Not Available
methyl isobutyl ketone	Methyl isobutyl ketone; (Hexone)	75 ppm	500 ppm	3000 ppm

Ingredient	Original IDLH	Revised IDLH
bisphenol A/ diglycidyl ether resin, liquid	Not Available	Not Available
toluene	500 ppm	Not Available
isobutanol	1,600 ppm	Not Available
(C12-14)alkylglycidyl ether	Not Available	Not Available
xylene	900 ppm	Not Available
ethylbenzene	800 ppm	Not Available
methyl isobutyl ketone	500 ppm	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use

Employers may need to use multiple types of controls to prevent employee overexposure.

Appropriate engineering controls

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)

Chemwatch: 9-90528 Page 8 of 19 Issue Date: 25/10/2017
Version No: 2.3 Print Date: 24/02/2019

Altex Epoxy High Build Surfacer Part A

aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range Upper end of the range		Upper end of the range
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity		2: Contaminants of high toxicity
	3: Intermittent, low production. 3: High production, heavy use	
	4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use
 - Contaminated gloves should be replaced.

Hands/feet protection

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

When handling liquid-grade epoxy resins wear chemically protective gloves , boots and apronsition $\frac{1}{2}$

The performance, based on breakthrough times ,of:

- Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent
- Butyl Rubber ranges from excellent to good
- Nitrile Butyl Rubber (NBR) from excellent to fair
- Neoprene from excellent to fair
- Polyvinyl (PVC) from excellent to poor

Chemwatch: 9-90528 Page 9 of 19 Issue Date: 25/10/2017 Version No: 2.3

Altex Epoxy High Build Surfacer Part A

Print Date: 24/02/2019

As defined in ASTM F-739-96

- Excellent breakthrough time > 480 min
- Good breakthrough time > 20 min
- Fair breakthrough time < 20 min Poor glove material degradation

Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively)

- DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin).
- DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use.

Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times

Body protection

See Other protection below

Overalls.

- PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.

Other protection

- Ensure there is ready access to a safety shower
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer*generated selection:

-Altex Epoxy High Build Surfacer Part A

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	A-AUS / Class 1	-
up to 50	1000	-	A-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	A-2
up to 100	10000	-	A-3
100+		-	Airline**

^{* -} Continuous Flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

^{** -} Continuous-flow or positive pressure demand.

Chemwatch: 9-90528 Page 10 of 19

Version No: 2.3

Page 10 of 19	Issue Date: 25/10/2017
Altex Epoxy High Build Surfacer Part A	Print Date: 24/02/2019

Appearance	white viscous liquid		
Physical state	Liquid	Relative density (Water = 1)	1.05
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	328
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	108	Molecular weight (g/mol)	Not Available
Flash point (°C)	10	Taste	Not Available
Evaporation rate	3.1 BuAC = 1	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	7.9	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.1	Volatile Component (%vol)	26
Vapour pressure (kPa)	3.83	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	3.32	VOC g/L	273

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Information on toxicological effects		
Inhaled	The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. Aliphatic alcohols with more than 3-carbons cause headache, dizziness, drowsiness, muscle weakness and delirium, central depression, coma, seizures and behavioural changes. Secondary respiratory depression and failure, as well as low blood pressure and irregular heart rhythms, may follow. Isobutanol appears to be more toxic than n-butyl alcohol. It may result in narcosis and death. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant	
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Overexposure to non-ring alcohols causes nervous system symptoms. These include headache, muscle weakness and inco-ordination, giddiness, confusion, delirium and coma. Animal testing showed that a single dose of bisphenol A diglycidyl ether (BADGE) given by mouth, caused an increase in immature sperm. Following a single dose of isobutanol in rats, deaths were delayed for several days and hepatic degeneration was evident. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)	
Skin Contact	This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterized by redness and swelling, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation when applied daily for 4 hours over 20 days. Application of isobutanol to human skin produced slight redness and blood congestion. Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Toxic effects may result from skin absorption Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.	
Eye	This material can cause eye irritation and damage in some persons. Instillation of isobutanol into the eye may cause moderate to severe irritation but no permanent injury to the comea.	
Chronic	Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Harmful: danger of serious damage to health by prolonged exposure through inhalation. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause	

Chemwatch: 9-90528 Page 11 of 19 Issue Date: 25/10/2017 Version No: 2.3

Altex Epoxy High Build Surfacer Part A

Print Date: 24/02/2019

significant toxic effects to the mother.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Bisphenol A diglycidyl ethers (BADGEs) produce a sensitization dermatitis (skin inflammation) characterized by eczema with blisters and papules, with considerable itching of the back of the hand. This may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. The dermatitis may last longer following each exposure, but is unlikely to become more intense. Lower molecular weight species produce sensitization more readily. Animal testing has shown an increase in the development of some tumours.

Oral exposure of rats to isobutanol caused cancers of the gullet and stomach, liver or blood (myelogenous leukaemia). Abnormal non-cancer growths were also more common in those animals exposed to isobutanol.

For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions. Exposure to some reactive diluents (notably, neopentylglycol diglycidyl ether, CAS RN: 17557-23-2) has caused cancer in some animal testing. Glycidyl ethers can cause genetic damage and cancer.

Intentional abuse (glue sniffing) or occupational exposure to toluene can result in chronic habituation. Chronic abuse has caused inco-ordination, tremors of the extremeties (due to widespread cerebrum withering), headache, abnormal speech, temporary memory loss, convulsions, coma, drowsiness, reduced colour perception, blindness, nystagmus (rapid, involuntary eye movements), hearing loss leading to deafness and mild dementia. There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.

Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity.

Altex Epoxy High Build	TOXICITY	IRRITATION
Surfacer Part A	Not Available	Not Available
	TOXICITY	IRRITATION
isphenol A/ diglycidyl ether resin, liquid	dermal (rat) LD50: >1200 mg/kg ^[2]	Eye (rabbit): 100mg - Mild
room, nquiu	Oral (rat) LD50: >1000 mg/kg ^[2]	
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 2mg/24h - SEVERE
toluene	Inhalation (rat) LC50: 49 mg/l/4H ^[2]	Eye (rabbit):0.87 mg - mild
toluene	Oral (rat) LD50: 636 mg/kg ^[2]	Eye (rabbit):100 mg/30sec - mild
		Skin (rabbit):20 mg/24h-moderate
		Skin (rabbit):500 mg - moderate
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye (rabbit): 2 20 mg/24h-moderate
isobutanol	Inhalation (rat) LC50: 19.2 mg/l/4H ^[2]	Eye (rabbit): 2 mg/24h - SEVERE
	Oral (rat) LD50: 2460 mg/kg ^[2]	Skin (rabbit): mg (open)-SEVERE
	TOXICITY	IRRITATION
	Oral (rat) LD50: >10000 mg/kg ^[2]	Eye (rabbit): mild [Ciba]
		Skin (guinea pig): sensitiser
(C12-14)alkylglycidyl ether		Skin (human): Irritant
		Skin (human): non- sensitiser
		Skin (rabbit): moderate
		Skin : Moderate
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant
xylene	Inhalation (rat) LC50: 4994.295 mg/l/4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE
	Oral (rat) LD50: 3523-8700 mg/kg ^[2]	Eye (rabbit): 87 mg mild
		Skin (rabbit):500 mg/24h moderate
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Eye (rabbit): 500 mg - SEVERE
ethylbenzene	Inhalation (mouse) LC50: 17.75 mg/l/2H ^[2]	Skin (rabbit): 15 mg/24h mild
	Oral (rat) LD50: 3500 mg/kg ^[2]	
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >16000 mg/kg ^[2]	Eye (human): 200 ppm/15m
methyl isobutyl ketone	Oral (rat) LD50: 2080 mg/kg ^[2]	Eye (rabbit): 40 mg - SEVERE
		Eye (rabbit): 500 mg/24h - mild
		Skin (rabbit): 500 mg/24h - mild

Chemwatch: 9-90528 Page 12 of 19 Issue Date: 25/10/2017 Version No. 2.3 Print Date: 24/02/2019

Altex Epoxy High Build Surfacer Part A

Bisphenol A dialycidyl ethers (BADGEs) produce a sensitization dermatitis (skin inflammation) characterized by eczema with blisters and papules, with considerable itching of the back of the hand. This may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. The dermatitis may last longer following each exposure, but is unlikely to become more intense. Lower molecular weight species produce sensitization more readily. Animal testing has shown an increase in the development of some tumours. Bisphenol A may have effects similar to female sex hormones and when administered to pregnant women, may damage the foetus. It may also damage male Altex Epoxy High Build reproductive organs and sperm. Oxiranes (including alvoidyl ethers and alkyl oxides, and epoxides) share many common characteristics with respect to animal toxicology. One such oxirane Surfacer Part A is ethyloxirane; data presented here may be taken as representative. For 1.2-butylene oxide (ethyloxirane): In animal testing, ethyloxirane increased the incidence of tumours of the airways in animals exposed via inhalation. However, tumours were not observed in mice chronically exposed via skin. Two structurally related substances, oxirane (ethylene oxide) and methyloxirane (propylene oxide), which are also directacting alkylating agents, have been classified as causing cancer. **BISPHENOL A/ DIGLYCIDYL** Foetoxicity has been observed in animal studies Oral (rabbit, female) NOEL 180 mg/kg (teratogenicity; NOEL (maternal 60 mg/kg ETHER RESIN, LIQUID For toluene: Acute toxicity: Humans exposed to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis (sleepiness) and death. When inhaled or swallowed, toluene can cause severe central nervous system depression, and in large doses has a narcotic effect. 60mL has caused death. Death of heart muscle fibres, liver swelling, congestion and bleeding of the lungs and kidney injury were all found on autopsy. Exposure to inhalation at a concentration of 600 parts per million for 8 hours resulted in the same and more serious symptoms including euphoria (a feeling of well-being), dilated pupils, convulsions and nausea. Exposure to 10000-30000 parts per million (1-3%) has been reported to cause narcosis and death. Toluene can also strip the skin of lipids, causing skin inflammation. Subchronic/chronic effects: Repeat doses of toluene cause adverse central nervous system effects and can damage the upper airway, the liver and the kidney. Adverse effects occur from both swallowing and inhalation. In humans, a reported lowest level causing adverse effects on the nervous system is 88 parts per million. In one case, toluene caused heart sensitization and death. In several cases of "glue sniffing", damage to the cerebellum was noted. Workers chronically exposed to toluene fumes have reported reduced white cell counts. TOLUENE Developmental/Reproductive toxicity: Exposure to high levels of toluene can result in adverse effects in the developing foetus. Several studies have indicated that high levels of toluene can also adversely affect the developing offspring in laboratory animals. In children who were exposed to toluene before birth, as a result of solvent abuse by the mother, variable growth, a small head, central nervous system dysfunction, attention deficits, minor facial and limb abnormalities, and developmental delay were seen. Absorption: Studies in humans and animals have shown that toluene is easily absorbed through the lungs and gastrointestinal tract, with much less being absorbed through the skin. Distribution: Animal studies show that toluene may be distributed in the body fat, bone marrow, spinal nerves, spinal cord and brain white matter, with lower levels in the blood, kidney and liver. Toluene has generally been found to accumulate in fatty tissue, and in highly vascularised tissues. Metabolism: Inhaled or ingested toluene may be metabolized to benzyl alcohol, after which it is further oxidized to benzaldehyde and benzoic acid. Benzoic acid is sometimes conjugated with glycine to form hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. O-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites. Excretion: Toluene is mainly (60-70%) excreted through the urine as hippuric acid. Benzoyl glucuronide accounts for 10-20% of excretion, and unchanged toluene through exhaled air also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours of exposure. XYLENE Reproductive effector in rats Ethylbenzene is readily absorbed when inhaled, swallowed or in contact with the skin. It is distributed throughout the body, and passed out through urine. It may irritate the skin, eyes and may cause hearing loss if exposed to high doses. Long Term exposure may cause damage to the kidney, liver and lungs, including a tendency to cancer formation, according to animal testing. There is no research on its effect on sex organs and unborn babies. ETHYLBENZENE NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA Liver changes, utheral tract, effects on fertility foetotoxicity, specific developmental abnormalities (musculoskeletal system) recorded. MIBK is primarily absorbed by the lungs in animals and humans but can be absorbed by the skin, stomach and gut. If inhaled, it may be found in the brain, METHYL ISOBUTYL KETONE liver, lung, vitreous fluid, kidney and blood. Oral and respiratory routes of exposure are of minimal effect with changes seen only in the liver and kidney. MIBK does not cause genetic damage or harm the foetus or offspring, and has low toxicity to aquatic organisms. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing Altex Epoxy High Build RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to Surfacer Part A & ISOBUTANOL hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to & METHYL ISOBUTYL severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or KETONE asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. The following information refers to contact allergens as a group and may not be specific to this product. Altex Epoxy High Build Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema Surfacer Part A & BISPHENOL involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated A/ DIGLYCIDYL ETHER RESIN, immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the LIQUID & opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one (C12-14)ALKYLGLYCIDYL with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an **ETHER** allergic test reaction in more than 1% of the persons tested. Animal testing over 13 weeks showed bisphenol A diglycidyl ether (BADGE) caused mild to moderate, chronic, inflammation of the skin. Reproductive and Developmental Toxicity: Animal testing showed BADGE given over several months caused reduction in body weight but had no reproductive effects Cancer-causing potential: It has been concluded that bisphenol A diglycidyl ether cannot be classified with respect to its cancer-causing potential in Genetic toxicity: Laboratory tests on genetic toxicity of BADGE have so far been negative. Immunotoxicity: Animal testing suggests regular injections of diluted BADGE may result in sensitization.

Altex Epoxy High Build Surfacer Part A & BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID

Consumer exposure: Comsumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Testing has not found any evidence of hormonal disruption.

The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics

Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities.

Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen

Chemwatch: 9-90528 Page **13** of **19**

Version No: 2.3

Altex Epoxy High Build Surfacer Part A

Issue Date: 25/10/2017 Print Date: 24/02/2019

	bonding to the acceptor site of the oestrogen receptor.		
BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID & XYLENE	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.		
TOLUENE & ISOBUTANOL & XYLENE & ETHYLBENZENE & METHYL ISOBUTYL KETONE	The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.		
ISOBUTANOL & XYLENE & ETHYLBENZENE	The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.		
ETHYLBENZENE & METHYL ISOBUTYL KETONE	WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.		
Acute Toxicity	✓ Carcinogenicity X		
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	~
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend:

X − Data either not available or does not fill the criteria for classification
 ✓ − Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

city					
Altex Epoxy High Build	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
Surfacer Part A	Not Available	Not Available	Not Available	Not Available	Not Available
bisphenol A/ diglycidyl ether	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
resin, liquid	EC50	48	Crustacea	ca.2mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	0.0073mg/L	4
	EC50	48	Crustacea	3.78mg/L	5
toluene	EC50	72	Algae or other aquatic plants	12.5mg/L	4
	BCF	24	Algae or other aquatic plants	10mg/L	4
	NOEC	168	Crustacea	0.74mg/L	5
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	1-430mg/L	2
isobutanol	EC50	48	Crustacea	1-100mg/L	2
	EC50	72	Algae or other aquatic plants	1-799mg/L	2
	NOEC	504	Crustacea	4mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	>5-mg/L	2
(C12-14)alkylglycidyl ether	EC50	48	Crustacea	6.07mg/L	2
	NOEC	48	Crustacea	<10mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	2.6mg/L	2
xylene	EC50	48	Crustacea	1.8mg/L	2
	EC50	72	Algae or other aquatic plants	3.2mg/L	2
	NOEC	73	Algae or other aquatic plants	0.44mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	0.0043mg/L	4
ethylbenzene	EC50	48	Crustacea	1.184mg/L	4
	EC50	96	Algae or other aquatic plants	3.6mg/L	4
	NOEC	168	Crustacea	0.96mg/L	5
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	69.808mg/L	3
methyl isobutyl ketone	EC50	48	Crustacea	=170mg/L	1
	EC50	96	Algae or other aquatic plants	275.488mg/L	3

Chemwatch: 9-90528 Page 14 of 19 Issue Date: 25/10/2017 Version No: 2.3

Altex Epoxy High Build Surfacer Part A

Print Date: 24/02/2019

NOEC 2 504 Crustacea Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 Leaend: (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive.

Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes > naphthalene resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks.

For bisphenol A and related bisphenols:

Environmental fate:

Biodegradability (28 d) 89% - Easily biodegradable

Bioconcentration factor (BCF) 7.8 mg/l

Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products

Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII

As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, "initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater." However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants.

Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d)

Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d)

Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d)

Freshwater algae (96 h): 2.73 mg/l

Marine water algae (96 h): 1.1 mg/l

Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l

In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms.

Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1

A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations. A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas.

Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane; (BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4hydroxydiphenyl)sulfone) and bis(4-hydroxyphenyl)sulfide) showed oestrogenic activity.

Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl)methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem,

Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF. The effect of pH value on the BPF photodegradation was also important.

Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative.

For 1,2-Butylene oxide (Ethyloxirane):

log Kow values of 0.68 and 0.86. BAF and BCF: 1 to 17 L./kg.

Aquatic Fate - Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that, if released to water, adsorption of ethyloxirane to sediment and suspended solids is not expected. Volatilization of ethyloxirane from water surfaces would be expected. Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. Models have predicted a biodegradation half-life in water of 15 days.

Terrestrial Fate: When released to soil, ethyloxirane is expected to have low adsorption and thus very high mobility. Volatilization from moist soil and dry soil surfaces is expected. Ethyloxirane is not expected to be persistent in soil.

Atmospheric Fate: It is expected that ethyloxirane exists solely as a vapor in ambient atmosphere. Ethyloxirane may also be removed from the atmosphere by wet deposition processes. The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2

Ecotoxicity - The potential for bioaccumulation of ethyloxirane in organisms is likely to be low and has low to moderate toxicity to aquatic organisms. Ethyloxirane is acutely toxic to water fleas and toxicity values for bacteria are close to 5000 mg/L. For algae, toxicity values exceed 500 mg/L.

 $log\ Koc: 2.05-3.08; Koc: 25.4-204; Half-life\ (hr)\ air: 0.24-42; Half-life\ (hr)\ H2O\ surface\ water: 24-672; Half-life\ (hr)\ H2O\ ground: 336-8640; Half-life\ (hr)\ soil: 52-672; Henry's\ Pa\ m3\ /mol: 1.000 + 1.000$ 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41.

Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years.

Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids Chemwatch: 9-90528 Page 15 of 19 Issue Date: 25/10/2017
Version No: 2.3 Print Date: 24/02/2019

Altex Epoxy High Build Surfacer Part A

may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084

For Formaldehyde:

Environmental Fate: Formaldehyde is common in the environment as a contaminant of smoke and as photochemical smog. Concentrated solutions containing formaldehyde are unstable and oxidize slowly. In the presence of air and moisture, polymerization takes place readily in concentrated solutions at room temperature to form paraformaldehyde.

Atmospheric Fate: In the atmosphere, formaldehyde both photolysis and reacts with reactive free radicals (primarily hydroxyl radicals). Reaction with nitrate radicals, insignificant during the day, may be an important removal process at night. Air Quality Standards: <0.1 mg/m3 as a 30 min. average, indoor air, non-industrial buildings (WHO guideline).

Aquatic Fate: Due to its solubility, formaldehyde will efficiently transfer to rain and surface water and will biodegrade to low concentrations within days. Adsorption to sediment and volatilization are not expected to be significant routes of biodegradation.

Drinking Water Standard: Formaldehyde: 900 ug/L. (WHO guideline).

mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L.

Terrestrial Fate: In soil, aqueous solutions of formaldehyde leach through the soil; at high concentrations adsorption to clay minerals may occur. Although biodegradable under both aerobic and anaerobic conditions the fate of formaldehyde in soil is unclear.

Ecotoxicity: Formaldehyde does not bioconcentrate in the food chain.

For Toluene: log Kow: 2.1-3; log Koc: 1.12-2.85; Koc: 37-260; log Kom: 1.39-2.89; Half-life (hr) air: 2.4-104:

Half-life (hr) H2O surface water: 5.55-528; Half-life (hr) H2O ground: 168-2628; Half-life (hr) soil: <48-240; Henny's Pa m3 /mol: 518-694; Henny's atm m3 /mol: 5.94:

E-03BOD 5 0.86-2.12, 5%COD - 0.7-2.52,21-27%;

ThOD - 3.13; BCF - 1.67-380;

log BCF - 0.22-3.28

Atmospheric Fate: The majority of toluene evaporates to the atmosphere from the water and soil. The main degradation pathway for toluene in the atmosphere is reaction with photochemically produced hydroxyl radicals. The estimated atmospheric half life for toluene is about 13 hours. Toluene is also oxidized by reactions with atmospheric nitrogen dioxide, oxygen, and ozone, but these are minor degradation pathways. Photolysis is not considered a significant degradative pathway for toluene.

Terrestrial Fate: Toluene is moderately retarded by adsorption to soils rich in organic material, therefore, transport to ground water is dependent on soil composition. In unsaturated topsoil containing organic material, it has been estimated that 97% of the toluene is adsorbed to the soil and only about 2% is in the soil-water phase and transported with flowing groundwater. There is little retardation in sandy soils and 2-13% of the toluene was estimated to migrate with flowing water; the remainder was volatilized, biodegraded, or unaccounted for. In saturated deep soils with no soil-air phase, about 48% may be transported with flowing groundwater. In surface soil, volatilization to air is an important fate process for toluene. In the environment, biodegradation of toluene to carbon dioxide occurs with a typical half life of 1-7 days.

Aquatic Fate: An important fate process for toluene is volatilization, the rate of which depends on the amount of turbulence in the surface water. The volatilization of toluene from static water has a half life of 1-16 days, whereas from turbulent water the half life is 5-6 hours. Degradation of toluene in surface water occurs primarily by biodegradation with a half life of less than one day under favorable conditions (presence of microorganisms, microbial adaptation, and optimum temperature). Biodegradation also occurs in shallow groundwater and in salt water (at a reduced rate). No data are available on anaerobic degradation of toluene in deep ground water conditions where aerobic degradation would be minimal.

Ecotoxicity: Bioaccumulation in the food chain is predicted to be low. Toluene has moderate acute toxicity to aquatic organisms. Toluene is, on the average, slightly toxic to fathead minnow, guppies and goldfish and not acutely toxic to bluegill or channel catfish and crab. Toluene, on the average, is slightly toxic to crustaceans specifically, shrimp species including grass shrimp and daggerblade grass shrimp. Toluene has a negative effect on green algae during their growth phase.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
bisphenol A/ diglycidyl ether resin, liquid	HIGH	HIGH
toluene	LOW (Half-life = 28 days)	LOW (Half-life = 4.33 days)
isobutanol	LOW (Half-life = 14.42 days)	LOW (Half-life = 4.15 days)
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
ethylbenzene	HIGH (Half-life = 228 days)	LOW (Half-life = 3.57 days)
methyl isobutyl ketone	HIGH (Half-life = 7001 days)	LOW (Half-life = 1.9 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
bisphenol A/ diglycidyl ether resin, liquid	LOW (LogKOW = 2.6835)
toluene	LOW (BCF = 90)
isobutanol	LOW (LogKOW = 0.76)
xylene	MEDIUM (BCF = 740)
ethylbenzene	LOW (BCF = 79.43)
methyl isobutyl ketone	LOW (LogKOW = 1.31)

Mobility in soil

Ingredient	Mobility
bisphenol A/ diglycidyl ether resin, liquid	LOW (KOC = 51.43)
toluene	LOW (KOC = 268)
isobutanol	MEDIUM (KOC = 2.048)
ethylbenzene	LOW (KOC = 517.8)
methyl isobutyl ketone	LOW (KOC = 10.91)

Version No: 2.3

Page 16 of 19 Issue Date: 25/10/2017

Altex Epoxy High Build Surfacer Part A Print Date: 24/02/2019

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ► Reduction
- ► Reuse
- ReuseRecycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
 - Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

NO Not Applicable

•3YE

HAZCHEM

Land transport (ADG)

UN number	1263	
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)	
Transport hazard class(es)	Class 3 Subrisk Not Applicable	
Packing group	II .	
Environmental hazard	Not Applicable	
Special precautions for user	Special provisions 163 367 Limited quantity 5 L	

Air transport (ICAO-IATA / DGR)

UN number	1263	
UN proper shipping name	Paint related material (including paint thinning or reducing compounds); Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base)	
Transport hazard class(es)	ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L	
Packing group	II .	
Environmental hazard	Not Applicable	
Special precautions for user	Special provisionsA3 A72 A192Cargo Only Packing Instructions364Cargo Only Maximum Qty / Pack60 LPassenger and Cargo Packing Instructions353	

Chemwatch: **9-90528**Page **17** of **19**Issue Date: **25/10/2017**Version No: **2.3**Print Date: **24/02/2019**

Altex Epoxy High Build Surfacer Part A

Passenger and Cargo Maximum Qty / Pack	5 L
Passenger and Cargo Limited Quantity Packing Instructions	Y341
Passenger and Cargo Limited Maximum Qty / Pack	1 L

Sea transport (IMDG-Code / GGVSee)

UN number	1263
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable
Packing group	П
Environmental hazard	Not Applicable
Special precautions for user	EMS Number F-E, S-E Special provisions 163 367 Limited Quantities 5 L

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID(25068-38-6) IS FOUND ON THE FOLLOWING REGULATORY LIS	STS
--	-----

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australia Inventory of Chemical Substances (AICS)
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule
2

- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

5

International Air Transport Association (IATA) Dangerous Goods Regulations International FOSFA List of Banned Immediate Previous Cargoes International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Chinese)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

TOLUENE(108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Hazardous chemicals which may require Health Monitoring

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Chinese)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

ISOBUTANOL(78-83-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes
Australia Exposure Standards
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australia Inventory of Chemical Substances (AICS)
GESAMP/EHS Composite List - GESAMP Hazard Profiles
IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

(Chinese)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

(English)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

(C12-14)ALKYLGLYCIDYL ETHER(68609-97-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australia Inventory of Chemical Substances (AICS)
International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Chinese)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

Version No: 2.3

Altex Epoxy High Build Surfacer Part A

Issue Date: 25/10/2017 Print Date: 24/02/2019

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Hazardous chemicals which may require Health Monitoring

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Chinese)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

ETHYLBENZENE(100-41-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Hazardous chemicals which may require Health Monitoring

Australia Inventory of Chemical Substances (AICS)

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Chinese)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

METHYL ISOBUTYL KETONE(108-10-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (toluene; (C12-14)alkylglycidyl ether; xylene; ethylbenzene; bisphenol A/ diglycidyl ether resin, liquid; methyl isobutyl ketone; isobutanol)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No ((C12-14)alkylglycidyl ether; methyl isobutyl ketone; isobutanol)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Legend:	Yes = All ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	25/10/2017
Initial Date	25/10/2017

Other information

Ingredients with multiple cas numbers

Name	CAS No
bisphenol A/ diglycidyl ether resin, liquid	25068-38-6, 25085-99-8

Chemwatch: 9-90528 Page 19 of 19 Issue Date: 25/10/2017 Version No: 2.3 Print Date: 24/02/2019

Altex Epoxy High Build Surfacer Part A

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL: No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.

Altex Epoxy High Build Surfacer Part B

RESENE PAINTS AUSTRALIA

Version No: **2.4**Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **25/10/2017** Print Date: **24/02/2019** S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Altex Epoxy High Build Surfacer Part B	
Synonyms	ot Available	
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses ParT B of a two pack epoxy surfacer

Details of the supplier of the safety data sheet

Registered company name	RESENE PAINTS AUSTRALIA
Address	7 Production Ave, Molendinar QLD 4214 Australia
Telephone	+61 7 55126600
Fax	+61 7 55126697
Website	Not Available
Email	Not Available

Emergency telephone number

Association / Organisation	Not Available	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	131126	+61 1800 951 288
Other emergency telephone numbers	Not Available	+61 2 9186 1132

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable	
Classification ^[1]	Flammable Liquid Category 2, Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1B, Reproductive Toxicity Category 2, Specific target organ toxicity - repeated exposure Category 2	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

SIGNAL WORD DANGER

Hazard statement(s)

H225	Highly flammable liquid and vapour.
H315	Causes skin irritation.
H318	Causes serious eye damage.
H317	May cause an allergic skin reaction.
H361	Suspected of damaging fertility or the unborn child.
H373	May cause damage to organs through prolonged or repeated exposure.

Supplementary statement(s)

Not Applicable

Page 2 of 14 Issue Date: 25/10/2017 Chemwatch: 9-90606 Version No: 2.4 Print Date: 24/02/2019

Altex Epoxy High Build Surfacer Part B

P201	Obtain special instructions before use.
P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P233	Keep container tightly closed.
P260	Do not breathe dust/fume/gas/mist/vapours/spray.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P281	Use personal protective equipment as required.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P308+P313	F exposed or concerned: Get medical advice/attention.	
P310	Immediately call a POISON CENTER or doctor/physician.	
P362	Take off contaminated clothing and wash before reuse.	
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.	
P302+P352	IF ON SKIN: Wash with plenty of soap and water.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.	

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	

Precautionary statement(s) Disposal

Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
68413-28-5	40-50	cashew nut liquid/ formaldehyde/ ethylenediamine polymer
107-15-3	1-10	<u>ethylenediamine</u>
108-88-3	10-20	toluene
90-72-2	<=1	2.4.6-tris[(dimethylamino)methyl]phenol

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change

Chemwatch: 9-90606 Page 3 of 14 Issue Date: 25/10/2017

Altex Epoxy High Build Surfacer Part B

Version No: 2.4 Print Date: 24/02/2019

absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary gedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Foam
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Fire Fighting

► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Fight fire from a safe distance, with adequate cover.
 - If safe, switch off electrical equipment until vapour fire hazard removed.
 - Use water delivered as a fine spray to control the fire and cool adjacent area.
 - ► Avoid spraying water onto liquid pools.
 - Do not approach containers suspected to be hot
 - Cool fire exposed containers with water spray from a protected location.
 - ▶ If safe to do so, remove containers from path of fire.
 - Liquid and vapour are highly flammable
 - ▶ Severe fire hazard when exposed to heat, flame and/or oxidisers.
 - Vapour may travel a considerable distance to source of ignition.
 - Heating may cause expansion or decomposition leading to violent rupture of containers.
 - On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include:

carbon dioxide (CO2)

nitrogen oxides (NOx)

other pyrolysis products typical of burning organic material.

Fire/Explosion Hazard

- Powdered Phenolic resin is a combustible dust and this means that it is capable of forming flammable and explosive dust clouds in air. Such dust clouds can be sensitive to low energy ignition. Combustion can also propagate along a powder trail of settled dust, or result in repeated explosions as more dust is disturbed and rises into the air.
- ► The presence of dust external to plant items creates a potential hazard in that a secondary explosion could occur in the event of a flame or burning material being ejected due to a primary explosion within plant equipment.
- The severity of explosions by ignition of dust clouds is often much greater than that of vapour or gas mixtures and in industrial situations the potential exists for substantial damage to structures and harm to personnel.
- For Phenol Formaldehyde* powders the explosion severity is 3.9 based upon an explosion severity rating. Similarly flammability rating for Phenol Formaldehyde* powders (relative sensitivity of dusts to ignition) is 9.3 based upon a severity rating. *[Empirical scale based upon standard Pittsburgh coal dust being 1.01
- ▶ Guidance as how to safely handle combustible dust can be obtained from including but not limited to AS/NZ standard 4745:2004 (Code of Practice for handling Combustible Dusts) and US National Fire Protection Association Standard 654. It is highly recommended that these standards be consulted prior to assessing and addressing the risks that can be encountered, other reference standards are (including but not limited to):

AS/NZS 30000: 2000 Electrical installations

AS/NZS 2381.1: 1999 Electrical equipment for explosive atmospheres.

HAZCHEM

•3YE

SECTION 6 ACCIDENTAL RELEASE MEASURES

Chemwatch: 9-90606 Page 4 of 14 Issue Date: 25/10/2017 Version No: 2.4

Altex Epoxy High Build Surfacer Part B

Print Date: 24/02/2019

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

▶ Containers, even those that have been emptied, may contain explosive vapours. ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. ▶ Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights, heat or ignition sources. When handling, **DO NOT** eat, drink or smoke Vapour may ignite on pumping or pouring due to static electricity. DO NOT use plastic buckets Safe handling Earth and secure metal containers when dispensing or pouring product. Use spark-free tools when handling. Avoid contact with incompatible materials. Keep containers securely sealed. Avoid physical damage to containers Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. DO NOT allow clothing wet with material to stay in contact with skin ▶ Store in original containers in approved flame-proof area. No smoking, naked lights, heat or ignition sources. ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped. Keep containers securely sealed. Other information ▶ Store away from incompatible materials in a cool, dry well ventilated area. Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- ► Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.

► For materials with a viscosity of at least 2680 cSt. (23 deg. C) Suitable container

- ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Altex Epoxy High Build Surfacer Part B

Print Date: 24/02/2019

Toluene:

- reacts violently with strong oxidisers, bromine, bromine trifluoride, chlorine, hydrochloric acid/ sulfuric acid mixture, 1.3-dichloro-5.5-dimethyl-2.4-imidazolidindione, dinitrogen tetraoxide, fluorine, concentrated nitric acid, nitrogen dioxide, silver chloride, sulfur dichloride, uranium fluoride, vinvl
- forms explosive mixtures with strong acids, strong oxidisers, silver perchlorate, tetranitromethane
- is incompatible with bis-toluenediazo oxide
- attacks some plastics, rubber and coatings
- may generate electrostatic charges, due to low conductivity, on flow or agitation.

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007
- ▶ Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- ► Aromatics can react exothermically with bases and with diazo compounds.
- Polymers based on cashew nutshell liquid admixed with formaldehyde or furaldehyde and other ingredients are used to produce so-called "friction dusts"
- ▶ Several fires have been experienced during bulk storage of the dust, attributed to auto-oxidation of the still partially unsaturated resin compound.
- ▶ Previously linseed oil was used in place of the nutshell liquid, but fires were then more frequent.
- Phenols are incompatible with strong reducing substances such as hydrides, nitrides, alkali metals, and sulfides.
- Avoid use of aluminium, copper and brass alloys in storage and process equipment.
- Heat is generated by the acid-base reaction between phenols and bases.
- Phenols are sulfonated very readily (for example, by concentrated sulfuric acid at room temperature), these reactions generate heat.
- Phenols are nitrated very rapidly, even by dilute nitric acid.
- Nitrated phenols often explode when heated. Many of them form metal salts that tend toward detonation by rather mild shock.

Storage incompatibility

- Must not be stored together 0

- May be stored together with specific preventions

May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	ethylenediamine	Ethylenediamine	10 ppm / 25 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	toluene	Toluene	50 ppm / 191 mg/m3	574 mg/m3 / 150 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
ethylenediamine	Ethylenediamine, 1,2-	0.88 ppm	Not Available	Not Available
toluene	Toluene	Not Available	Not Available	Not Available
2,4,6- tris[(dimethylamino)methyl]phenol	Tris(dimethylaminomethyl)phenol, 2,4,6-	3.6 mg/m3	40 mg/m3	240 mg/m3

Ingredient	Original IDLH	Revised IDLH
cashew nut liquid/ formaldehyde/ ethylenediamine polymer	Not Available	Not Available
ethylenediamine	1,000 ppm	Not Available
toluene	500 ppm	Not Available
2,4,6- tris[(dimethylamino)methyl]phenol	Not Available	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Appropriate engineering controls

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Chemwatch: 9-90606 Page 6 of 14 Issue Date: 25/10/2017 Version No: 2.4

Altex Epoxy High Build Surfacer Part B

Print Date: 24/02/2019

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ► Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- Fig. 12 The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Hands/feet protection

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Chemwatch: 9-90606 Page 7 of 14 Issue Date: 25/10/2017
Version No: 2.4 Print Date: 24/02/2019

Altex Epoxy High Build Surfacer Part B

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. **Body protection** See Other protection below Overalls. PVC Apron. PVC protective suit may be required if exposure severe. Evewash unit. Ensure there is ready access to a safety shower Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. Other protection For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Altex Epoxy High Build Surfacer Part B

Material	СРІ
TEFLON	В
BUTYL	С
CPE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
VITON	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

Respiratory protection

Type K-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	K-AUS P2	-	K-PAPR-AUS / Class 1 P2
up to 50 x ES	-	K-AUS / Class 1 P2	-
up to 100 x ES	-	K-2 P2	K-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on
 detecting any odours through the respirator. The odour may indicate that the mask is
 not functioning properly, that the vapour concentration is too high, or that the mask is
 not properly fitted. Because of these limitations, only restricted use of cartridge
 respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

76ak-p()

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	off white viscous liquid		
Physical state	Liquid	Relative density (Water = 1)	1.29
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	214
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	2800
Initial boiling point and boiling range (°C)	99	Molecular weight (g/mol)	Not Available
Flash point (°C)	-3	Taste	Not Available

^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Version No: 2.4

Altex Epoxy High Build Surfacer Part B

Issue Date: 25/10/2017 Print Date: 24/02/2019

Evaporation rate	3.9 BuAC = 1	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	6.7	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.0	Volatile Component (%vol)	14
Vapour pressure (kPa)	4.6	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	3.5	VOC g/L	127.08

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur. Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body. Inhalation of epoxy resin amine hardeners (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting several days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma".
Ingestion	Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
Skin Contact	This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Toxic effects may result from skin absorption Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Еуе	If applied to the eyes, this material causes severe eye damage. Vapours of volatile amines irritate the eyes, causing excessive secretion of tears, inflammation of the conjunctiva and slight swelling of the cornea, resulting in "halos" around lights. This effect is temporary, lasting only for a few hours. However this condition can reduce the efficiency of undertaking skilled tasks, such as driving a car. Direct eye contact with liquid volatile amines may produce eye damage, permanent for the lighter species.
Observis	Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. Intentional abuse (glue sniffing) or occupational exposure to toluene can result in chronic habituation. Chronic abuse has caused inco-ordination, tremors

Chronic

of the extremeties (due to wide spread cerebrum with ering), headache, abnormal speech, temporary memory loss, convulsions, coma, drowsiness, reduced to the extremeties (due to wide spread cerebrum with ering), headache, abnormal speech, temporary memory loss, convulsions, coma, drowsiness, reduced to the extreme time of t

 $colour\ perception,\ blindness,\ ny stagmus\ (rapid,\ involuntary\ eye\ movements),\ hearing\ loss\ leading\ to\ deafness\ and\ mild\ dementia.$ There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions

include erythema, intolerable itching and severe facial swelling.

Altex Epoxy High Build Surfacer	TOXICITY	IRRITATION
Part B	Not Available	Not Available
cashew nut liquid/ formaldehyde/ ethylenediamine polymer	TOXICITY	IRRITATION
	Oral (rat) LD50: 1080 mg/kg ^[2]	Not Available
	TOXICITY	IRRITATION
ethylenediamine	Dermal (rabbit) LD50: =560 mg/kg ^[2]	Eye (rabbit):0.67 mg SEVERE
	Inhalation (mouse) LC50: 0.3 mg/l/4h ^[2]	Eye (rabbit):0.75mg/24h SEVERE

Chemwatch: 9-90606 Page 9 of 14 Issue Date: 25/10/2017
Version No: 2.4 Print Date: 24/02/2019

Altex Epoxy High Build Surfacer Part B

	Oral (rat) LD50: 500 mg/kg ^[2]	Skin(rabbit):10 mg/24h open SEVERE Skin(rabbit):450 mg open moderate
toluene	TOXICITY dermal (rat) LD50: >2000 mg/kg ^[1] Inhalation (rat) LC50: 49 mg/kg ^[2] Oral (rat) LD50: 636 mg/kg ^[2]	IRRITATION Eye (rabbit): 2mg/24h - SEVERE Eye (rabbit):0.87 mg - mild Eye (rabbit):100 mg/30sec - mild Skin (rabbit):20 mg/24h-moderate Skin (rabbit):500 mg - moderate
2,4,6- tris[(dimethylamino)methyl]phenol	TOXICITY dermal (rat) LD50: >973 mg/kg ^[1] Inhalation (rat) LC50: >0.125 mg/l/1hr.] ^[2] Oral (rat) LD50: 1200 mg/kg ^[2]	IRRITATION Eye (rabbit): 0.05 mg/24h - SEVERE Skin (rabbit): 2 mg/24h - SEVERE

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins. Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

Acute toxicity of ethylenediamine (EDA) is considered to be low to moderate. In animal testing, it affected the eyes (causing clouding of the lens and atrophy of the retina) and kidneys. EDA is also capable of causing hypersensitivity to the airway and asthma in the work environment, although the levels required for this to occur are not known. EDA is corrosive to the skin and eyes due to its high alkalinity. It sensitises the skin and airways in humans and cross-sensitisation can occur with chemicals that are structurally similar. Weight loss has been reported in animal testing. Evidence generally shows that ethylenediamine is unlikely to cause genetic, developmental or reproductive damage.

ETHYLENEDIAMINE

Acute toxicity of ethylenediamine (LD50, rat, oral range from 637 mg/kg to 1850 mg/kg; LC50, rat, inhalation >29 mg/l and LD50, rabbit, dermal 560 mg/kg) is considered to be low to moderate. Due to the high alkalinity, ethylenediamine is corrosive to the skin and eyes. It is a dermal and respiratory sensitiser in humans and has been reported to cross-sensitize for chemicals of similar structure. In repeat dose studies, decreased body weight along with decreased water and feed consumption were observed. Every attempt was made to minimise the irritating nature of EDA and reduce the pH by using EDA-2HCL. Hepatocellular pleomorphism was noted in every study following dietary administration of longer than 13 weeks duration. Gavage administration resulted in effects in the eyes and kidneys. Kidney effects consisted of degenerative and regenerative changes in the tubular epithelium. The Lowest-Observable-Adverse-Effect -Level (LOAEL) is 100 mg/kg/day with a No-Observable-Effect-Level (NOEL) of 20 mg/kg/day observed in the chronic dietary feeding study. Ethylenediamine was rapidly excreted with most of the material eliminated in the urine within 24 hours. Ethylenediamine has produced weakly positive results, 2-3 times greater than control values, in several Ames tests, which may or may not be related to an impurity. Subsequent studies conducted with purer material were negative. All other tests including several in vitro assays (CHO gene mutation, sister chromatid exchange with CHO cells and UDS with primary rat hepatocytes) and a rat dominant lethal assay were negative. The weight of evidence from both in vitro and in vivo tests indicates that ethylenediamine is unlikely to be genotoxic. In chronic bioassays via two routes of exposure there was no carcinogenic effect. In developmental toxicity studies, growth retardation was noted at maternally toxic levels. However, there was no evidence of developmental toxicity at maternally toxic doses when compared with a pair-fed control. There was no effect on reproductive parameters at levels, which produced parental toxicity

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

For toluene:

Acute toxicity: Humans exposed to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis (sleepiness) and death. When inhaled or swallowed, toluene can cause severe central nervous system depression, and in large doses has a narcotic effect. 60mL has caused death. Death of heart muscle fibres, liver swelling, congestion and bleeding of the lungs and kidney injury were all found on autopsy.

Exposure to inhalation at a concentration of 600 parts per million for 8 hours resulted in the same and more serious symptoms including euphoria (a feeling of well-being), dilated pupils, convulsions and nausea. Exposure to 10000-30000 parts per million (1-3%) has been reported to cause narcosis and death. Toluene can also strip the skin of lipids, causing skin inflammation.

Subchronic/chronic effects: Repeat doses of toluene cause adverse central nervous system effects and can damage the upper airway, the liver and the kidney. Adverse effects occur from both swallowing and inhalation. In humans, a reported lowest level causing adverse effects on the nervous system is 88 parts per million. In one case, toluene caused heart sensitization and death. In several cases of "glue sniffing", damage to the cerebellum was noted. Workers chronically exposed to toluene fumes have reported reduced white cell counts.

Developmental/Reproductive toxicity: Exposure to high levels of toluene can result in adverse effects in the developing foetus. Several studies have indicated that high levels of toluene can also adversely affect the developing offspring in laboratory animals. In children who were exposed to toluene before birth, as a result of solvent abuse by the mother, variable growth, a small head, central nervous system dysfunction, attention deficits, minor facial and limb abnormalities, and developmental delay were seen.

Absorption: Studies in humans and animals have shown that toluene is easily absorbed through the lungs and gastrointestinal tract, with much less being absorbed through the skin.

Distribution: Animal studies show that toluene may be distributed in the body fat, bone marrow, spinal nerves, spinal cord and brain white matter, with lower levels in the blood, kidney and liver. Toluene has generally been found to accumulate in fatty tissue, and in highly vascularised tissues.

Metabolism: Inhaled or ingested toluene may be metabolized to benzyl alcohol, after which it is further oxidized to benzaldehyde and benzoic acid. Benzoic acid is sometimes conjugated with glycine to form hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. O-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites.

Excretion: Toluene is mainly (60-70%) excreted through the urine as hippuric acid. Benzoyl glucuronide accounts for 10-20% of excretion, and unchanged toluene through exhaled air also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours of exposure.

TOLUENE

Chemwatch: 9-90606 Page 10 of 14 Issue Date: 25/10/2017 Version No: 2.4

Altex Epoxy High Build Surfacer Part B

Print Date: 24/02/2019

Overexposure to most of these materials may cause adverse health effects.

Many amine-based compounds can cause release of histamines, which, in turn, can trigger allergic and other physiological effects. including constriction of the bronchi or asthma and inflammation of the cavity of the nose. Whole-body symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, rapid heartbeat, itching, reddening of the skin, urticaria (hives) and swelling of the face. which are usually transient.

There are generally four routes of possible or potential exposure: inhalation, skin contact, eye contact, and swallowing. Inhalation: Inhaling vapours may result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs. Higher concentrations of certain amines can produce severe respiratory irritation, characterized by discharge from the nose, coughing, difficulty in breathing and chest pain. Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, inflammation of the bronchi and lungs, and possible lung damage. Repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice and liver enlargement. Some amines have been shown to cause kidney, blood and central nervous system disorders in animal studies

While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and my experience distress while breathing, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapours. Once sensitized, these individuals must avoid any further exposure to amines. Chronic overexposure may lead to permanent lung injury, including reduction in lung function, breathlessness, chronic inflammation of the bronchi, and immunologic lung disease. Products with higher vapour pressures may reach higher concentrations in the air, and this increases the likelihood of worker exposure. Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists or heated vapours. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis and emphysema.

TRIS[(DIMETHYLAMINO)METHYL]PHENOL

Skin contact: Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury, from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative skin inflammation. Skin contact with some amines may result in allergic sensitization. Sensitised persons should avoid all contact with amine catalysts. Whole-body effects resulting from the absorption of the amines though skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually temporary.

Eye contact: Amine catalysts are alkaline and their vapours are irritating to the eyes, even at low concentrations. Direct contact with liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. Contact with solid products may result in mechanical irritation, pain and corneal injury.

Exposed persons may experience excessive tearing, burning, inflammation of the conjunctiva, and swelling of the cornea, which manifests as a blurred or foggy vision with a blue tint, and sometimes a halo phenomenon around lights. These symptoms are temporary and usually disappear when exposure ends. Some people may experience this effect even when exposed to concentrations that do not cause respiratory

Ingestion: Amine catalysts have moderate to severe toxicity if swallowed. Some amines can cause severe irritation, ulcers and burns of the mouth, throat, gullet and gastrointestinal tract. Material aspirated due to vomiting can damage the bronchial tubes and the lungs. Affected people may also experience pain in the chest or abdomen, nausea, bleeding of the throat and gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, collapse of circulation, coma and even death.

Altex Epoxy High Build Surfacer Part B & **ETHYLENEDIAMINE**

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Altex Epoxy High Build Surfacer Part B & CASHEW NUT LIQUID/ FORMALDEHYDE/ ETHYLENEDIAMINE POLYMER

For cashew nutshell liquid (test substance Cardolite NX 4708 – distilled cashew nut shell liquid)

No female sex hormone-like effects was observed at all concentrations tested. The substance was found not to cause mutations. Injection into the skin caused moderate to severe redness and peeling.

Cardolite NC-700 produced a sensitization rate of 70% and was classified as a strong sensitizer.

CASHEW NUT LIQUID/ FORMALDEHYDE/ **ETHYLENEDIAMINE POLYMER & 2,4,6-**TRIS[(DIMETHYLAMINO)METHYL]PHENOL

No significant acute toxicological data identified in literature search.

ETHYLENEDIAMINE & 2,4,6-TRIS[(DIMETHYLAMINO)METHYL]PHENOL

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	~
Mutagenicity	×	Aspiration Hazard	×

Legend:

X - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Altex Epoxy High Build Surfacer Part B

VALUE SOURCE ENDPOINT TEST DURATION (HR) **SPECIES**

Chemwatch: 9-90606 Page 11 of 14 Issue Date: 25/10/2017 Print Date: 24/02/2019

Version No: 2.4 Altex Epoxy High Build Surfacer Part B

	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
cashew nut liquid/ formaldehyde/ ethylenediamine polymer	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	1-544.7mg/L	2
ethylenediamine	EC50	48	Crustacea	3mg/L	1
	EC50	96	Algae or other aquatic plants	61mg/L	1
	NOEC	504	Crustacea	0.16mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	0.0073mg/L	4
	EC50	48	Crustacea	3.78mg/L	5
toluene	EC50	72	Algae or other aquatic plants	12.5mg/L	4
	BCF	24	Algae or other aquatic plants	10mg/L	4
	NOEC	168	Crustacea	0.74mg/L	5
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
2,4,6- tris[(dimethylamino)methyl]phenol	LC50	96	Fish	175mg/L	2
	EC50	72	Algae or other aquatic plants	2.8mg/L	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances" which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive.

Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks.

Ecotoxicity - Phenols with log Pow >7.4 are expected to exhibit low toxicity to aquatic organisms however; the toxicity of phenols with a lower log Pow is variable. Dinitrophenols are more toxic than predicted from QSAR estimates. Hazard information for these groups is not generally available.

For Toluene: log Kow: 2.1-3; log Koc: 1.12-2.85; Koc: 37-260; log Kom: 1.39-2.89; Half-life (hr) air : 2.4-104;

Half-life (hr) H2O surface water: 5.55-528; Half-life (hr) H2O ground: 168-2628; Half-life (hr) soil : <48-240;

Henry's Pa m3 /mol: 518-694: Henry's atm m3 /mol: 5.94;

E-03BOD 5 0.86-2.12, 5%COD - 0.7-2.52,21-27%;

ThOD - 3.13; BCF - 1.67-380; log BCF - 0.22-3.28

Atmospheric Fate: The majority of toluene evaporates to the atmosphere from the water and soil. The main degradation pathway for toluene in the atmosphere is reaction with photochemically produced hydroxyl radicals. The estimated atmospheric half life for toluene is about 13 hours. Toluene is also oxidized by reactions with atmospheric nitrogen dioxide, oxygen, and ozone, but these are minor degradation pathways. Photolysis is not considered a significant degradative pathway for toluene.

Terrestrial Fate: Toluene is moderately retarded by adsorption to soils rich in organic material, therefore, transport to ground water is dependent on soil composition. In unsaturated topsoil containing organic material, it has been estimated that 97% of the toluene is adsorbed to the soil and only about 2% is in the soil-water phase and transported with flowing groundwater. There is little retardation in sandy soils and 2-13% of the toluene was estimated to migrate with flowing water; the remainder was volatilized, biodegraded, or unaccounted for. In saturated deep soils with no soil-air phase, about 48% may be transported with flowing groundwater. In surface soil, volatilization to air is an important fate process for toluene. In the environment, biodegradation of toluene to carbon dioxide occurs with a typical half life of 1-7 days.

Aquatic Fate: An important fate process for toluene is volatilization, the rate of which depends on the amount of turbulence in the surface water. The volatilization of toluene from static water has a half life of 1-16 days, whereas from turbulent water the half life is 5-6 hours. Degradation of toluene in surface water occurs primarily by biodegradation with a half life of less than one day under favorable conditions (presence of microorganisms, microbial adaptation, and optimum temperature). Biodegradation also occurs in shallow groundwater and in salt water (at a reduced rate). No data are available on anaerobic degradation of toluene in deep ground water conditions where aerobic degradation would be minimal.

Ecotoxicity: Bioaccumulation in the food chain is predicted to be low. Toluene has moderate acute toxicity to aquatic organisms. Toluene is, on the average, slightly toxic to fathead minnow, guppies and goldfish and not acutely toxic to bluegill or channel catfish and crab. Toluene, on the average, is slightly toxic to crustaceans specifically, shrimp species including grass shrimp and daggerblade grass shrimp. Toluene has a negative effect on green algae during their growth phase.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
ethylenediamine	LOW	LOW
toluene	LOW (Half-life = 28 days)	LOW (Half-life = 4.33 days)
2,4,6- tris[(dimethylamino)methyl]phenol	HIGH	нівн

Chemwatch: **9-90606** Page **12** of **14**

Version No: 2.4

Altex Epoxy High Build Surfacer Part B

Bioaccumulative potential

Ingredient	Bioaccumulation
ethylenediamine	LOW (BCF = 0.07)
toluene	LOW (BCF = 90)
2,4,6- tris[(dimethylamino)methyl]phenol	LOW (LogKOW = 0.773)

Mobility in soil

Ingredient	Mobility
ethylenediamine	LOW (KOC = 24.72)
toluene	LOW (KOC = 268)
2,4,6- tris[(dimethylamino)methyl]phenol	LOW (KOC = 15130)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- ▶ Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO Not Applicable
HAZCHEM	•3YE

Land transport (ADG)

. , ,		
UN number	1263	
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)	
Transport hazard class(es)	Class 3 Subrisk Not Applicable	
Packing group	II	
Environmental hazard	Not Applicable	
Special precautions for user	Special provisions 163 367 Limited quantity 5 L	

Issue Date: 25/10/2017

Print Date: 24/02/2019

Chemwatch: 9-90606 Page 13 of 14

Version No: 2.4

Altex Epoxy High Build Surfacer Part B

Issue Date: **25/10/2017**Print Date: **24/02/2019**

Air transport (ICAO-IATA / DGR)

UN number	1263			
UN proper shipping name	Paint related material (including paint thinning or reducing compounds); Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base)			
	ICAO/IATA Class	3		
Transport hazard class(es)	ICAO / IATA Subrisk Not Applicable			
	ERG Code	3L		
Packing group	П			
Environmental hazard	Not Applicable			
	Special provisions		A3 A72 A192	
	Cargo Only Packing Instructions		364	
	Cargo Only Maximum Qty / Pack		60 L	
Special precautions for user	Passenger and Cargo Packing Instructions		353	
	Passenger and Cargo Maximum Qty / Pack		5L	
	Passenger and Cargo	Limited Quantity Packing Instructions	Y341	
	Passenger and Cargo	Limited Maximum Qty / Pack	1L	

Sea transport (IMDG-Code / GGVSee)

UN number	1263	
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)	
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable	
Packing group	Ш	
Environmental hazard	Not Applicable	
Special precautions for user	EMS Number F-E , S-E Special provisions 163 367 Limited Quantities 5 L	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

CASHEW NUT LIQUID/ FORMALDEHYDE/ ETHYLENEDIAMINE POLYMER(68413-28-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

ETHYLENEDIAMINE(107-15-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

5

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk
International Air Transport Association (IATA) Dangerous Goods Regulations
International FOSFA List of Banned Immediate Previous Cargoes
International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations
(Chinese)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

(English)
United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

TOLUENE(108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Altex Epoxy High Build Surfacer Part B

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Exposure Standards Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Hazardous chemicals which may require Health Monitoring

Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Chinese)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

2.4.6-TRISI(DIMETHYLAMINO)METHYLIPHENOL(90-72-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Chinese)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (Spanish)

National Inventory Status

5

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (toluene; 2,4,6-tris[(dimethylamino)methyl]phenol; ethylenediamine; cashew nut liquid/ formaldehyde/ ethylenediamine polymer)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (cashew nut liquid/ formaldehyde/ ethylenediamine polymer)
Japan - ENCS	No (cashew nut liquid/ formaldehyde/ ethylenediamine polymer)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Legend:	Yes = All ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	25/10/2017
Initial Date	25/10/2017

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancel

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.